

SPE Workshop: Evolution of Flow Assurance – Learnings from the Past and Navigating

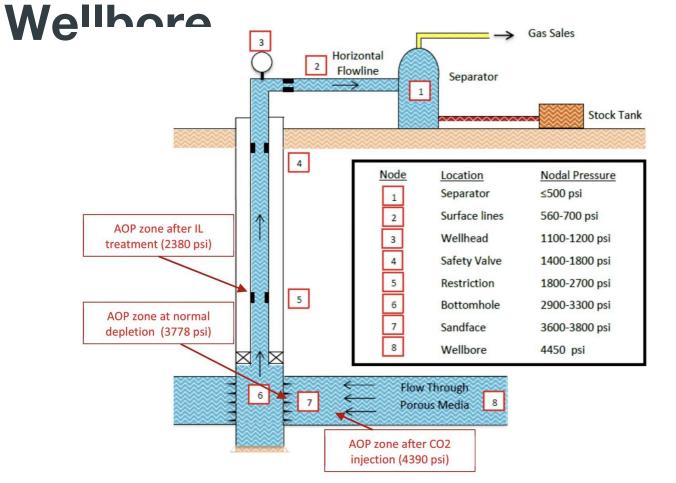
Future Challenges 29 - 30 April 2025 KUALA LUMPUR, MALAYSIA

SPE Workshop: Evolution of Flow Assurance – Learnings from the Past and Navigating Future

The Persistent Challenge of Asphaltene Precipitation in CO₂-EOR and Novel Surfactant-Based Solutions

PES Enterprise Australia Pty Ltd

Jerry Yeoh


Contents

- 01 Mechanisms of Asphaltene Precipitation:
 From Reservoir to Wellbore
- ◆ 02 Integrating CO₂-EOR Technologies to Mitigate Asphaltene Precipitation
- ♦ 03 Future Strategies and Recommendations

01 Flow Assurance from Reservoir to

-- asphaltene precipitation

Fig 1. A schematic diagram of a conventional oil well in the target reservoir, showing the relationship between the range of nodal pressures and the onset pressure (AOP) for asphaltene precipitation (from Bisweswar Ghosha, Journal of Petroleum Science and Engineering 180 (2019) 1046–1057.)

01 Reservoir -- Original Asphaltene Precipitation

30°C/60MPa, GOR4000 Fig. 2a

60°C/100MPa, 42hr Fig. 2b

Fig. 2e

60°C/100MPa, 69hr Fig. 2c

100°C/100MPa, 22hr Fig. 2d

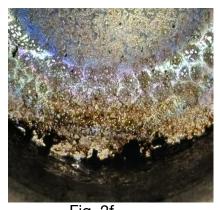


Fig. 2f 180℃/180MPa, inside the PVT cell

PVT Experimental Data showing Original Asphaltene Precipitation

A simulation experiment was conducted using an ultra-deep oil sample from the Junggar Basin to investigate phase evolution in oil reservoirs. The experiment successfully reproduced the characteristic process of "low-pressure charging and high-pressure accumulation" commonly observed in reservoir systems.

Figures 2a–2d depict the reservoir's response to cyclic temperature and pressure variations, clearly highlighting the occurrence of solid-phase precipitation. High-resolution images of the solid deposits formed within the reactor after the experiment are presented in Figures 2e and 2f. The simulated oil had a density of 0.8171 g/cm³ and an apphaltane content of 1.071494

PES Australia - Confident asphaltene content of 1.0714%.

01 Reservoir -- Original Asphaltene Precipitation

Table1. Experiment data of oil volume

	Oil Volume	Volume change	T	Р
Time (min)	(ml)	(%)	$(^{\circ}\!\!\!C)$	(Mpa)
0	24.366	0%	30	60
40	18.246	-25%	60	60
55	16.789	-31%	60	60
100	15.157	-38%	60	100
1060	3.357	-86%	60	100
1330	2.808	-88%	60	100
1390	2.681	-89%	60	100
1450	2.364	-90%	60	100
1510	2.034	-92%	60	100
1570	1.611	-93%	60	100
2500	1.296	-95%	60	100
6100	1.142	-95%	60	100
8020	0.704	-97%	100	100
	Cannot Be			
9520	Measured	No data	100	110

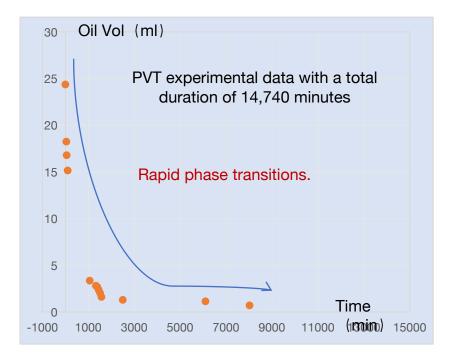


Fig.3 Graph of Oil Volume vs. Time

Pressure is the primary influencing factor

01 Reservoir -- Artificial process of asphaltene

precipitation

CO2 - Enhanced Oil Recovery

Table2. Slimtube Analysis of black oil at Reservoir Conditions 40MPa and 50°C, immiscible flood

SARA Analysis of	Before CO ₂ Flooding (injection fluid)			After CO₂ Flooding (wash fluid)			
MB6330 Oil	Test 1 %	Test 2 %	Average %	Test 1 %	Test 2 %	Average %	
Asphaltenes	1.1294	1.2421	1.1858	30.7743	34.455	32.6147	
Resins	3.7649	3.7432	3.7541	35.0997	39.3618	37.2308	
Aromatic Hydrocarbon s	6.0938	6.8383	6.4661	12.2348	8.1102	10.1725	
Saturated Hydrocarbon s	89.012	88.1765	88.5943	21.8912	18.073	19.9821	

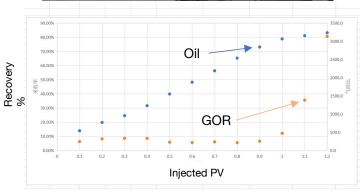


Fig.4 Slimtube apparatus and testing data

01 Wellbore

Monitoring Asphaltene Precipitation via Near-Infrared Solid Detection Technology

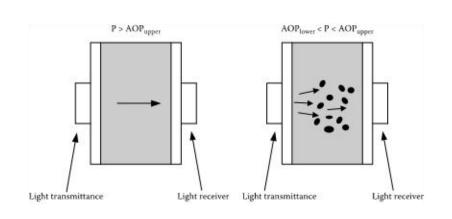
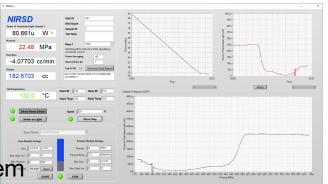



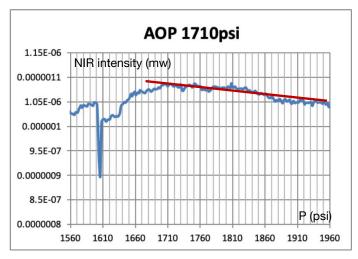
Fig.5 Principle of NIRSDS

* NIRSDS - Near Infrared Solid Detection System

Features :

- ♦ Pressure: 100 MPa, 200 MPa optional
- ◆ Temperature: 150°C 180°C
- ◆ Volume: 50 ml 100 ml
- Pressure Accuracy:0.01% Fs
- ◆ Temperature Accuracy: 0.1°C
- Near-Infrared (NIR)Detection

Fig. 6. Experimental apparatus for asphaltene precipitation detection using NIRSDS



01 Wellbore AOP and APE

Monitoring Asphaltene Precipitation via Near-Infrared Solid Detection Technology

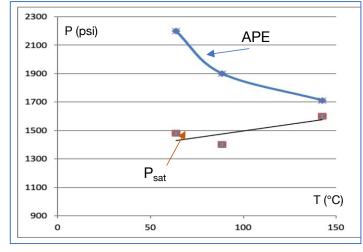


Fig. 7a AOP detection

Fig. 7b Asphaltene precipitation envelope

Fig. 7 By the requirements, AOP and APE were detected using the NIRSDS system

Table 3. AOP and BP data

Temperature (°C)	AOP (psi)	BP (psi)
142.5	1710	1600
88.4	1900	1400
63.7	2200	1480

Note: The downhole sample was sourced from the Tarim Basin, and asphaltene deposits were found in the wellbore.

^{*} NIRSDS - Near Infrared Solid Detection System

02 Reservoir

-- Integrating CO₂-EOR Technologies to Mitigate Asphaltene

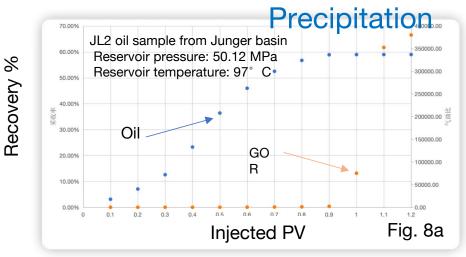
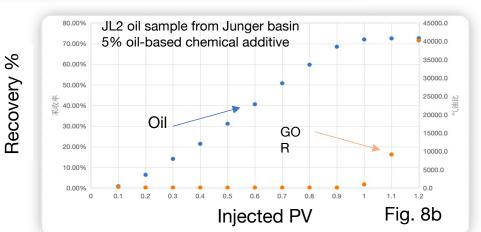
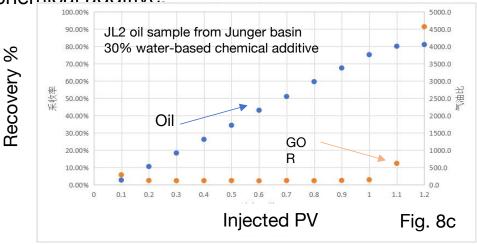




Fig. 8. Effect of various chemical additives—including oil-based and water-based amphiphilic surfactants—on CO_2 injection into oil. These additives significantly enhanced oil recovery (EOR) and increased CO_2 solubility. (8a) without chemical additive, (8b) with 5% oil-based chemical additive, and (8c) with 30% water-based chemical additive.

Slimtube

02 Reservoir

-- Integrating CO₂-EOR Technologies to Mitigate Asphaltene

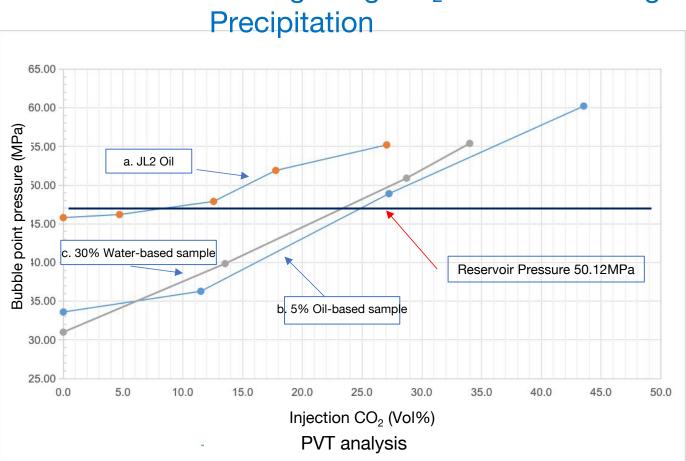
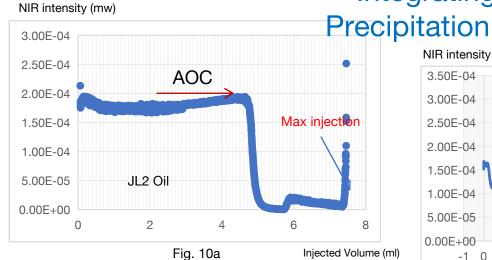


Fig. 9. The effect of chemical additives-comprising oil-based and water-based amphiphilic surfactants - on CO₂ injection into oil. The additives notably reduce bubble point pressure and improve CO₂ solubility. (a) without chemical additive, (b) with 5% oil-based chemical additive, and (c) with 30% water-based chemical additive.


Fig. 9

02 Reservoir

-- Integrating CO₂-EOR Technologies to Mitigate Asphaltene

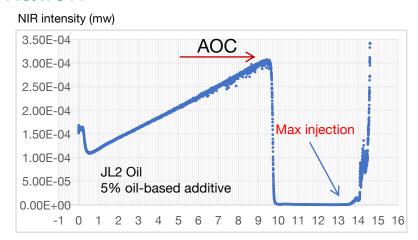
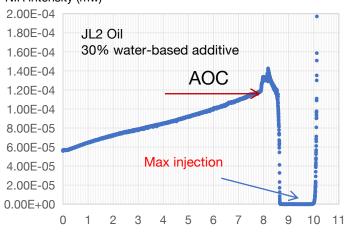



Table 4. Data Comparison of Continuous CO₂ Injection into Oil Without Fig. 10b Injected Volume (ml) and With Chemical Additives

JL2 Oil	Reservoir P psi	Oil vol ml	Injection CO2 vol ml	Injected Vol %	Max Injection Vol ml	Max Vol %
Without chemical additive	7267psi	33.89	4.65	12.07	7.35	17.82
5% oil—based additive	7267psi	30.09	9.50	24.00	13.50	30.97
30% water—based additive	7267psi	30.24	8.60	22.14	10.10	25.04

Fig. 10. Continuous CO₂ injection under reservoir conditions (97 °C /7267psi) at a flow rate of 0.1 mL/min: (10a) without chemical additive, (10b) with 5% oil-based chemical additive, and (10c) with 30% water-based chemical additive.

*AOC (Asphaltene Onset Concentration)

NIR in Reservoir

-- Integrating CO₂-EOR Technologies to Mitigate Asphaltene

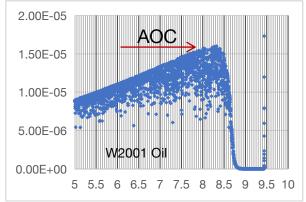
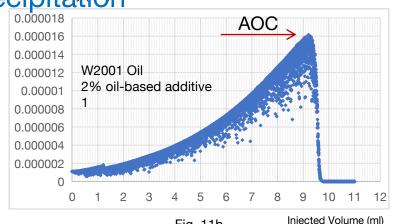



Fig. 11a Injected Volume (ml)

Injected Volume (ml) Fig. 11b

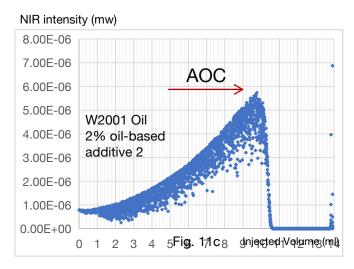
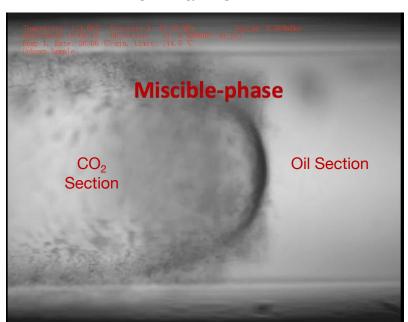


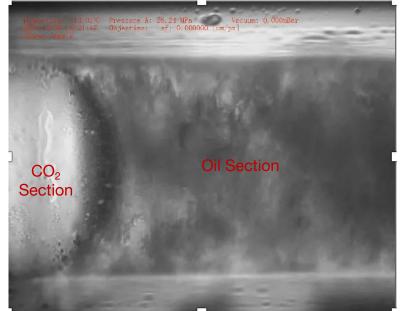
Table 5. Data Comparison of Continuous CO₂ Injection into Oil Without and With Oil-based Chemical Additives

No	Sample	CO2 injection	CO ₂ solubility
1	Live oil W2001	8.35ml (27.33%)	9.45ml (30.93%)
2	Live oil W2001 2% YT02 chemical additive 1	9.2ml (30.56%)	9.87ml (32.8%)
3	Live oil W2001 2% Wax inhibitor and viscosity reducer additive 2	9.7599ml (32.47%)	13.92ml (46.3%)

Fig. 11. Continuous CO₂ injection under reservoir conditions (44.7°C / 2320 psi)at a flow rate of 0.1 mL/min: (a) without chemical additive, (b) with 2% YT oil-based chemical additive. and (c) with 2% different oil-based chemical additive.

*AOC (Asphaltene Onset Concentration)




O2 Reservoir-- Integrating CO₂-EOR Technologies to Mitigate Asphaltene

JL2 Tank Oil

Precipitation and Oil with 5% oil-based additive

JL2 Tank Oil with 30% water-based additive

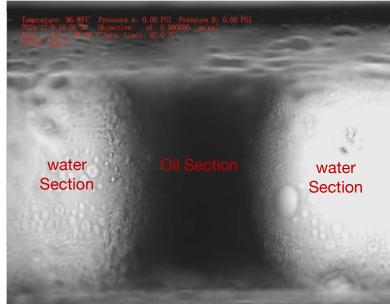
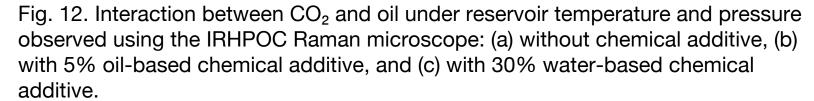



Fig. 12a

Fig. 12b

Fig. 12c

03 Future Strategies and Recommendations

- ✓ When addressing asphaltene precipitation, it is crucial to identify where the issue originates, from the reservoir to the wellbore.
- ✓ In CO₂-enhanced oil recovery (CO₂-EOR), asphaltene precipitation typically begins in the reservoir and extends into the wellbore. To mitigate this challenge, new strategies can be explored, such as integrating CO₂-EOR technologies specifically designed to minimize asphaltene precipitation.
- ✓ Our studies indicate that a combination of WAG (Water-Alternating-Gas) injection with water-based chemical additives is significantly more effective than WAG alone.

Thank you all for your attention. I hope this sharing has provided you with some inspiration and enjoyment.

